Polyprotic Acids and Bases

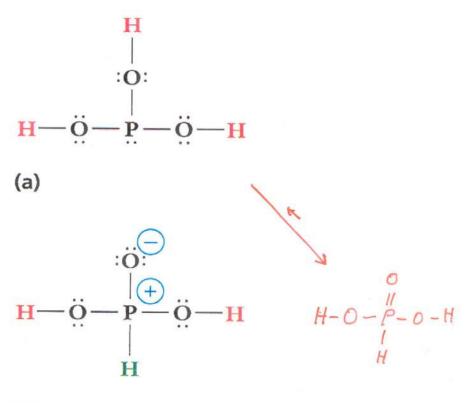
Capable of donating (acids) or accepting (bases) more than one proton, in succession:

$$H_{3}PO_{4}(aq) + H_{2}O(l) \neq H_{2}PO_{4}^{(aq)}(aq) + H_{3}O^{+}(aq)$$
 $K_{a1} = 7.6 \times 10^{-3}$

 $H_2PO_4^{-}(aq) + H_2O(l) \neq HPO_4^{2^{-}}(aq) + H_3O^{+}(aq)$ $K_{a2} = 6.2 \times 10^{-8}$

$$HPO_4^{2-}(aq) + H_2O(l) \neq PO_4^{3-}(aq) + H_3O^+(aq)$$
 $K_{a3} = 2.1 \times 10^{-13}$

$$\frac{\mathsf{K}_{\mathsf{a}_2}}{\mathsf{K}_{\mathsf{a}_1}} \approx \frac{\mathsf{K}_{\mathsf{a}_3}}{\mathsf{K}_{\mathsf{a}_2}} \approx 10^{-5}$$


<u>All</u> polyprotic acids are weak, except for H₂SO₄ (first H⁺ donation only):

 $H_{2}SO_{4} (aq) + H_{2}O (l) \neq HSO_{4}^{-} (aq) + H_{3}O^{+} (aq) \qquad K_{a1} \approx 10^{2}$ $HSO_{4}^{-} (aq) + H_{2}O (l) \neq SO_{4}^{2-} (aq) + H_{3}O^{+} (aq) \qquad K_{a2} = 1.2 \times 10^{-2}$

Table 12.3: Stepwise Equilibrium Constants for SelectedPolyproptic Acids

TABLE 12.3

Stepwise equilibrium constants for selected polyprotic acids						
Acid name	Formula	pK _{a1}	pK _{a2}	pK _{a3}		
Hydrosulfuric	H_2S	7.04	13.89			
Hydroselenic	H ₂ Se	3.89	11.			
Sulfurous	H_2SO_3	1.81	6.99			
Sulfuric	H_2SO_4	-2.	1.92			
Selenous	H ₂ SeO ₃	2.46	7.31			
Selenic	H_2SeO_4	-2.	1.92			
Phosphorous	H ₃ PO ₃	2.00	6.59			
Phosphoric	H ₃ PO ₄	2.12	7.21	12.67		
Arsenic	H_3AsO_4	2.25	6.77	11.60		
Carbonic	H_2CO_3	6.37	10.32			
Silicic	H_4SiO_4	9.66	11.7	12.		
Chromic	H_2CrO_4	0.74	6.49			
Oxalic	НООССООН	1.23	4.19			
Malonic	HOOCCH ₂ COOH	2.83	5.69			
Succinic	HOOC(CH ₂) ₂ COOH	4.16	5.61			
Glutaric	HOOC(CH ₂) ₃ COOH	4.31	5.41			
Adipic	HOOC(CH ₂) ₄ COOH	4.43	5.41			
Phthalic	$C_6H_4(COOH)_2$	2.89	5.51			
Citric	C ₃ H ₄ (OH)(COOH) ₃	3.14	4.77	6.39		
Ascorbic (vitamin C)	$C_6H_6O_4(OH)_2$	4.10	11.79			

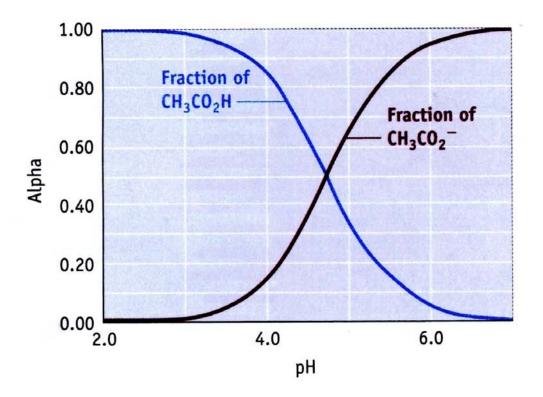

(b)

FIGURE 10.7 (a) The simplest Lewis diagram that can be drawn for H_3PO_3 gives an incorrect structure. This acid would be triprotic, like H_3PO_4 . (b) The observed structure of H_3PO_3 requires assigning formal charge to the P atom and the lone O atom. The hydrogen atom attached to the P is not released into acid solution, so the acid is diprotic.

Common name	IUPAC name	Chemical formula	Structural formula	pK _a 1	pK _a 2
Oxalic acid	ethanedioic acid	ноос-соон	но он	1.27	4.27
Malonic acid	propanedioic acid	HOOC-(CH ₂)-COOH	но он	2.85	5.70
Succinic acid	butanedioic acid	HOOC-(CH ₂) ₂ -COOH	HOLOH	4.21	5.41
Glutaric acid	pentanedioic acid	HOOC-(CH ₂) ₃ -COOH	но он	4.34	5.41
Adipic acid	hexanedioic acid	HOOC-(CH ₂) ₄ -COOH	но он	4.41	5.41
Pimelic acid	heptanedioic acid	HOOC-(CH ₂) ₅ -COOH	но	4.50	5.43
Suberic acid	octanedioic acid	HOOC-(CH ₂) ₆ -COOH	но	4.62	5.41
Azelaic acid	nonanedioic acid	HOOC-(CH ₂) ₇ -COOH	но он	4.54	5.41
Sebacic acid	decanedioic acid	HOOC-(CH ₂) ₈ -COOH	HO	4	
	undecanedioic acid	HOOC-(CH ₂) ₉ -COOH			
	dodecanedioic acid	HOOC-(CH ₂) ₁₀ -COOH			

Alpha Plots

So-called "alpha plots" depict how the fractions (α) of the species in solutions of weak acids and bases vary with the pH. The α -plot below, for example, is for a 0.1 M solution of acetic acid:

With increasing pH (brought about, for example, by gradual addition of a strong base), the fraction of the protonated species (acetic acid) decreases, and the fraction of the deprotonated species (acetate ion) increases.

The pH at the point where the two curves cross (for which $[CH_3COOH] = [CH_3COO]$) equals the pK_a (4.75) of acetic acid, since:

 $CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-} + H_{3}O^{+}$ $K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} = [H_{3}O^{+}]$ $pK_{a} = -\log[H_{3}O^{+}] = pH$

For a diprotic acid (H₂A), *e.g.*, H₂CO₃, it can be shown by using mass balance considerations and the two acid equilibrium expressions:

$$H_{2}A + H_{2}O \rightleftharpoons HA^{-} + H_{3}O^{+} \qquad K_{\alpha 1} = \frac{[HA^{-}][H_{3}O^{+}]}{[H_{2}A]}$$
$$HA^{-} + H_{2}O \rightleftharpoons A^{2-} + H_{3}O^{+} \qquad K_{\alpha 2} = \frac{[A^{2-}][H_{3}O^{+}]}{[HA^{-}]}$$

a second s

that the variations with pH of the fractions (α) of the three species in solution (H₂A, HA⁻, and A²⁻) are given by:

$$\alpha_{H_{2}A} = \frac{[H_{3}O^{+}]^{2}}{[H_{3}O^{+}]^{2} + [H_{3}O^{+}]K_{\alpha 1} + K_{\alpha 1}K_{\alpha 2}}$$
$$\alpha_{HA^{-}} = \frac{[H_{3}O^{+}]K_{\alpha 1}}{[H_{3}O^{+}]^{2} + [H_{3}O^{+}]K_{\alpha 1} + K_{\alpha 1}K_{\alpha 2}}$$
$$\alpha_{A^{2}} = \frac{K_{\alpha 1}K_{\alpha 2}}{[H_{3}O^{+}]^{2} + [H_{3}O^{+}]K_{\alpha 1} + K_{\alpha 1}K_{\alpha 2}}$$

For a typical diprotic acid, the term $K_{\alpha 1}K_{\alpha 2}$ is negligibly small compared to the other two terms in the denominators of these expressions.

For a triprotic acid (H₃A), *e.g.*, H₃PO₄, it can similarly be shown by using mass balance considerations and the three acid equilibrium expressions:

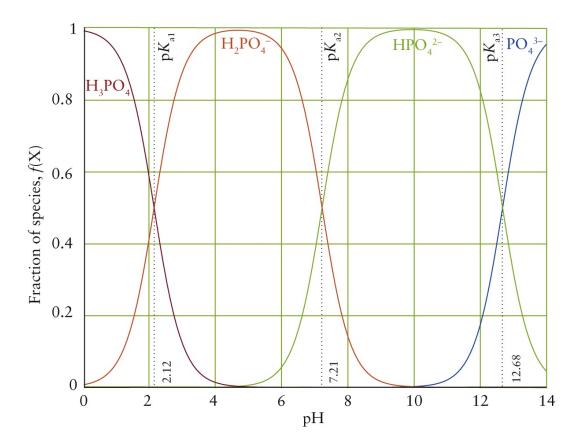
 $H_{3}A + H_{2}O \rightleftharpoons H_{2}A^{-} + H_{3}O^{+} \qquad K_{\alpha 1} = \frac{[H_{2}A^{-}][H_{3}O^{+}]}{[H_{3}A]}$ $H_{2}A^{-} + H_{2}O \rightleftharpoons HA^{2-} + H_{3}O^{+} \qquad K_{\alpha 2} = \frac{[HA^{2-}][H_{3}O^{+}]}{[H_{2}A^{-}]}$ $HA^{2-} + H_{2}O \rightleftharpoons A^{3-} + H_{3}O^{+} \qquad K_{\alpha 3} = \frac{[A^{3-}][H_{3}O^{+}]}{[HA^{2-}]}$

that the variations with pH of the fractions (α) of the four species in solution (H₃A, H₂A⁻, HA²⁻, and A³⁻) are given by:

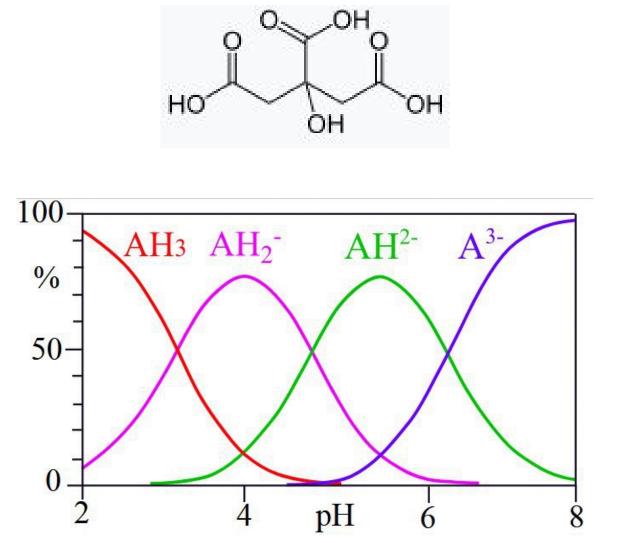
$$\alpha_{H_{3}A} = \frac{[H_{3}O^{+}]^{3}}{[H_{3}O^{+}]^{3} + K_{\alpha 1}[H_{3}O^{+}]^{2} + K_{\alpha 1}K_{\alpha 2}[H_{3}O^{+}] + K_{\alpha 1}K_{\alpha 2}K_{\alpha 3}}$$


$$\alpha_{\mathbf{H}_{2}\mathbf{A}^{-}} = \frac{\mathbf{K}_{\alpha 1} [\mathbf{H}_{3}\mathbf{O}^{+}]^{2}}{[\mathbf{H}_{3}\mathbf{O}^{+}]^{3} + \mathbf{K}_{\alpha 1} [\mathbf{H}_{3}\mathbf{O}^{+}]^{2} + \mathbf{K}_{\alpha 1} \mathbf{K}_{\alpha 2} [\mathbf{H}_{3}\mathbf{O}^{+}] + \mathbf{K}_{\alpha 1} \mathbf{K}_{\alpha 2} \mathbf{K}_{\alpha 3}}$$

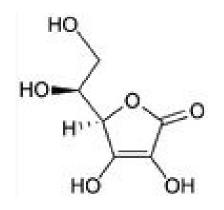
 $\alpha_{\mathrm{HA}^{2^{-}}} = \frac{\mathrm{K}_{\alpha 1} \mathrm{K}_{\alpha 2} [\mathrm{H}_{3} \mathrm{O}^{+}]}{[\mathrm{H}_{3} \mathrm{O}^{+}]^{3} + \mathrm{K}_{\alpha 1} [\mathrm{H}_{3} \mathrm{O}^{+}]^{2} + \mathrm{K}_{\alpha 1} \mathrm{K}_{\alpha 2} [\mathrm{H}_{3} \mathrm{O}^{+}] + \mathrm{K}_{\alpha 1} \mathrm{K}_{\alpha 2} \mathrm{K}_{\alpha 3}}$


$$\alpha_{\mathbf{A}^{3^{+}}} = \frac{\mathbf{K}_{\alpha 1} \mathbf{K}_{\alpha 2} \mathbf{K}_{\alpha 3}}{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]^{3} + \mathbf{K}_{\alpha 1} \left[\mathbf{H}_{3} \mathbf{O}^{+}\right]^{2} + \mathbf{K}_{\alpha 1} \mathbf{K}_{\alpha 2} \left[\mathbf{H}_{3} \mathbf{O}^{+}\right] + \mathbf{K}_{\alpha 1} \mathbf{K}_{\alpha 2} \mathbf{K}_{\alpha 3}}$$

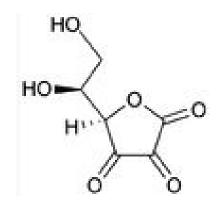
For a typical triprotic acid, the term $K_{\alpha 1}K_{\alpha 2}K_{\alpha 3}$ is negligibly small compared to the other three terms in the denominators of these expressions. The relative contributions of these other three terms are strongly dependent on the pH of the solution.


<u>Carbonic Acid</u>: (H₂CO₃)

Phosphoric Acid: (H₃PO₄)



<u>Citric Acid</u>:



 \rightleftharpoons

Ascorbic Acid: (Vitamin C)

Reduced Form

Oxidized Form